What is a fuzzy rule?

A fuzzy rule can be defined as a conditional
statement in the form:

IF XisA
THENYyisB

where x and y are linguistic variables; and A and B
are linguistic values determined by fuzzy sets on the
universe of discourses X and Y, respectively.

Linguistic variables

m At the root of fuzzy set theory lies the idea of linguistic
variables.

m Alinguistic variable is a fuzzy variable. For example, the
statement “John is tall” implies that the linguistic variable John
takes the linguistic value tall.

m The range of possible values of a linguistic variable represents
the universe of discourse of that variable. For example, the
universe of discourse of the linguistic variable speed might have
the range between 0 and 220 km/h and may include such fuzzy
subsets as very slow, slow, medium, fast, and very fast.

What is the difference between classical and
fuzzy rules?

A classical IF-THEN rule uses binary logic, for

Rule: 1 Rule: 2
IF speedis>100 IF  speedis <40
THEN Min_stopping_Dist = 300THEN Max_stopping_distance = 40

The variable speed can have any numerical value
between 0 and 220 km/h, and stopping_distance can
take either value 300 or 40. In other words, classical
rules are expressed in the black-and-white language of
Boolean logic.
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We can also represent the stopping distance rules in a

fuzzy form:
Rule: 1 Rule: 2
IF speed is fast IF speed is slow

THEN stopping_distance is long THEN stopping_distance is short

In fuzzy rules, the linguistic variable speed also has
the range (the universe of discourse) between 0 and
220 km/h, but this range includes fuzzy sets, such as
slow, medium and fast. The universe of discourse of
the linguistic variable stopping_distance can be
between 0 and 300 m and may include such fuzzy
sets as short, medium and long.

m Hedges are terms that modify the shape of fuzzy
sets. They include adverbs such as very,
somewhat, quite, more or less and slightly.

IF height is very tall
THEN weight is very heavy

IF  speed is very slow
THEN stopping_distance is very short

Fuzzy Rules fire partially
And relate fuzzy sets

m Fuzzy rules relate fuzzy sets.

m In a fuzzy system, all rules can fire to some
extent, or in other words fire partially. If the
antecedent is true to some degree of
membership, then the consequent is also true to
some degree.




Afuzzy rule can have multiple antecedents, for
example:

IF project_duration is long
AND project_staffing is large
AND project_funding is inadequate
THEN risk is high

IF service is excellent
OR food is delicious
THEN tip is generous

OR Multiple Consequents

IF temperature is hot
THEN hot_water is reduced;
cold_water is increased

Fuzzy sets of tall and heavy men
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These fuzzy sets provide the basis for a weight estimation
model. The model is based on a relationship between a
man’s height and his weight:

IF height is tall
THEN weight is heavy

The diagrams depict the rule:
If temperature is hot then turn thermostat down a lot,

with the input temperature is warm.

Fist we’ll look at the rule executor. The effect of this type of
inference is to generate an output fuzzy value that is the
conclusion fuzzy value clipped at the maximum value of the
intersection of the antecedent fuzzy value and the input fuzzy
value.
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The value of the output or a truth membership grade

of the rule consequent can be estimated directly from a

corresponding truth membership grade in the
antecedent. This form of fuzzy inference uses a
method called. monotonic selection
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Fuzzy Rules in Jess

If you are tall you are heavy

FuzzyValue condition = new FuzzyValue(height,"tall');
FuzzyValue conclusion = new FuzzyValue(weight, "heavy');
FuzzyRule rulel = new FuzzyRule(Q);

Fuzzyvalue input = new FuzzyValue(height,“tall™);
rulel.addAntecedent(condition);
rulel.addConclusion(conclusion);
rulel.addInput(input);

FuzzyValueVector fvv = rulel.execute();

FuzzyExample4.java
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B Fuzzy Sets: short, average, tall
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If you are average what are you?

FuzzyValue condition = new FuzzyValue(height,"tall");
FuzzyValue conclusion = new FuzzyValue(weight, “heavy");
FuzzyValue input = new FuzzyValue(height,"average");
FuzzyRule rulel = new FuzzyRule();
rulel.addAntecedent(condition);
rulel.addConclusion(conclusion);

rulel.addInput(input);

FuzzyValueVector fwv = rulel.execute();
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If you are tall you are heavy

|| Fumzy Sets: result, heavy =™~
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FuzzyExampled java

The output fuzzy value that is the

conclusion fuzzy value clipped at

the maximum value of the

intersection of the antecedent fuzzy

value and the input fuzzy value 16

More on Fuzzy inference

The most commonly used fuzzy inference technique
is the so-called Mamdani method. In 1975,
Professor Ebrahim Mamdani of London University
built one of the first fuzzy systems to control a
steam engine and boiler combination. He applied a
set of fuzzy rules supplied by experienced human
operators.

Mamdani fuzzy inference Algorithm

m The Mamdani-style fuzzy inference process is
performed in four steps:

« fuzzification of the input variables,

« rule evaluation;

« aggregation of the rule outputs, and finally
« defuzzification.




We examine a simple two-input one-output problem that
includes three rules:

Rule: 1 Rule: 1

IF X is A3 IF project_funding is adequate
OR yisB1 OR  project_staffing is small
THEN zisC1 THEN risk is low

Rule: 2 Rule: 2

IF X is A2 IF project_funding is marginal
AND yisB2 AND project_staffing is large
THEN zis C2 THEN risk is normal

Rule: 3

IF  xisAl IF project_funding is inadequate
THEN zis C3 THEN risk is high
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Step 1: Fuzzification

The first step is to take the crisp inputs, x1 and y1
(project funding and project staffing), and determine
the degree to which these inputs belong to each of the
appropriate fuzzy sets.

Crisp Input
x1

: LB B2
05 A2 = 07 -k‘v' =
0.2 0.1

0 X1 0 v Y

Hx=A1) =05 Hy=gy=01
Hx=p2) =02 =gz =07

Step 2: Rule Evaluation

The second step is to take the fuzzified inputs,
Hi=a1) = 0.5, Bepz) = 0.2, py=py) = 0.1 and pyopp) =
0.7, and apply them to the antecedents of the fuzzy
rules. If a given fuzzy rule has multiple antecedents,
the fuzzy operator (AND or OR) is used to obtain a
single number that represents the result of the
antecedent evaluation. This number (the truth value)
is then applied to the consequent membership
function.

To evaluate the disjunction of the rule antecedents, we
use the OR fuzzy operation. Typically, fuzzy expert
systems make use of the classical fuzzy operation
union:

Halp(X) = max [pa(x), pa(x)]
Similarly, in order to evaluate the conjunction of the

rule antecedents, we apply the AND fuzzy operation
intersection:

BaNg(X) = min [ua(X), pa(X)]

Mamdani-style rule evaluation

1 1 1
0.0 0.1 oRrR \ 0.1
; =
0 x1 X 0 y1 v "™/ o z
Rule 1: IFxis A3 (0.0) OR yisB1(0.1) THEN zisC1(0.1)
1 1 07 1
/A2 \ 02 2] [ \02 |2
/ (min)
0 x1 X 0 yi Y 0 z
Rule 2: IF xis A2 (0.2) AND yisB2(0.7) THEN 2isC2 (0.2)
1 1 7\
05 05
N A
0 x1 X 0 z
Rule 3: IF x is A1 (0.5) THEN zis C3(0.5)
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Now the result of the antecedent evaluation can be
applied to the membership function of the
consequent.

The most common method of correlating the rule
consequent with the truth value of the rule
antecedent is to cut the consequent membership
function at the level of the antecedent truth. This
method is called clipping. Since the top of the
membership function is sliced, the clipped fuzzy set
loses some information. However, clipping is still
often preferred because it involves less complex and
faster mathematics, and generates an aggregated
output surface that is easier to defuzzify.




m While clipping is a frequently used method, scaling
offers a better approach for preserving the original
shape of the fuzzy set. The original membership
function of the rule consequent is adjusted by
multiplying all its membership degrees by the truth
value of the rule antecedent. This method, which
generally loses less information, can be very useful
in fuzzy expert systems.

Clipped and scaled membership functions

Degree of Degree of
Membership Membership

10 10

0.0 0.0

Step 3: Aggregation of the rule outputs

Aggregation is the process of unification of the
outputs of all rules. We take the membership
functions of all rule consequents previously clipped or
scaled and combine them into a single fuzzy set.

The input of the aggregation process is the list of
clipped or scaled consequent membership functions,
and the output is one fuzzy set for each output
variable.

Aggregation of the rule outputs
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Execute a Fuzzy Rule in Jess

rulel.addInput(input);
FuzzyValueVector fvv = rulel.execute();

FuzzyVariable rhs = new FuzzyVariable("weight",0,300,"pounds");
rhs.addTerm("result",fvv.fuzzyValueAt(0).getFuzzySet());

Step 4: Defuzzification

The last step in the fuzzy inference process is
defuzzification. Fuzziness helps us to evaluate the
rules, but the final output of a fuzzy system has to be
a crisp number. The input for the defuzzification
process is the aggregate output fuzzy set and the
output is a single number.




m There are several defuzzification methods, but
probably the most popular one is the centroid
technique. It finds the point where a vertical line
would slice the aggregate set into two equal masses.

u(x)
1.0

0.84

m Centroid defuzzification method finds a point
representing the centre of gravity of the fuzzy set, A,
on the interval, ab.

m Areasonable estimate can be obtained by calculating
it over a sample of points.

p(x)
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Centre of gravity (COG):

_ (0+10+20)x0.1+ (30 +40+50 + 60) x 0.2+ (70+80 + 90 +100)x 0.5 _
0.1+0.1+0.1+0.2+0.2+0.2+0.2+0.5+0.5+0.5+0.5

COG 67.4
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Defuzzification in Jess

System.out.printin("Moment Defuz: " +
fvv.fuzzyValueAt(0).momentDefuzzify());

FuzzyExample4.java

Process of developing a fuzzy expert system

1. Specify the problem and define linguistic variables.
2. Determine fuzzy sets.
3. Elicit and construct fuzzy rules.

4. Encode the fuzzy sets, fuzzy rules and procedures
to perform fuzzy inference into the expert system.

5. Evaluate and tune the system.

Sugeno fuzzy inference

m Mamdani-style inference, as we have just seen,
requires us to find the centroid of a two-dimensional
shape by integrating across a continuously varying
function. In general, this process is not
computationally efficient.

= Michio Sugeno suggested to use a single spike, a
singleton, as the membership function of the rule
consequent. A singleton, or more precisely a fuzzy
singleton, is a fuzzy set with a membership
function that is unity at a single particular point on
the universe of discourse and zero everywhere else.
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Sugeno-style fuzzy inference is very similar to the
Mamdani method. Sugeno changed only a rule
consequent. Instead of a fuzzy set, he used a
mathematical function of the input variable. The
format of the Sugeno-style fuzzy rule is

IF XisA
AND vyisB
THEN zisf(x,y)
where X, y and z are linguistic variables; A and B are

fuzzy sets on universe of discourses X and Y,
respectively; and f (X, y) is a mathematical function.
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The most commonly used zero-order Sugeno fuzzy
model applies fuzzy rules in the following form:

IF Xis A

AND vyisB

THEN zisk
where k is a constant.

In this case, the output of each fuzzy rule is constant.
All consequent membership functions are
represented by singleton spikes.

We examine a simple two-input one-output problem that
includes three rules:

Rule: 1 Rule: 1

IF x is A3 IF project_funding is adequate
OR yisB1 OR  project_staffing is small
THEN zisCl THEN risk is low

Rule: 2 Rule: 2

IF x is A2 IF project_funding is marginal
AND yisB2 AND project_staffing is large
THEN zis C2 THEN risk is normal

Rule: 3 Rule: 3

IF xis Al IF project_funding is inadequate
THEN zis C3 THEN risk is high

Mamdani-style rule evaluation

1 1 1
00 0.1 or \ 01
> -~ (max)
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Rule1: IFxisA3(0.0) OR yisB1(01)  THEN 7isC1(0.1)
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Rule 3: IF x is Al (0.5) THEN zis C3(0.5)

Sugeno-style rule evaluation
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Sugeno-style aggregation of the rule outputs

Rule 1:IFxisA3(0.0) OR yisB1(0.1) THEN ziskl1(0.1)
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Rule 3 IF xis Al (0.5) THEN Zis k3 (0.5)




Weighted average (WA):

WA= u(k1) xk1+p(k2)xk2+u(k3)xk3 0.1x20+0.2x50+0.5x80
p(k) + p(k2) + pn(k3) 0.1+0.2+0.5
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Sugeno-style defuzzification

Crisp Output
z1

How to make a decision on which method
to apply — Mamdani or Sugeno?

m Mamdani method is widely accepted for capturing
expert knowledge. It allows us to describe the
expertise in more intuitive, more human-like
manner. However, Mamdani-type fuzzy inference
entails a substantial computational burden.

m On the other hand, Sugeno method is
computationally effective and works well with
optimisation and adaptive techniques, which makes
it very attractive in control problems, particularly
for dynamic nonlinear systems.

Building a fuzzy expert system: case study

m Aservice centre keeps spare parts and repairs parts.

m A customer brings a failed item and receives a spare
of the same type.

m Failed parts are repaired by servers, placed on the
shelf, and thus become spares.

m The objective here is to advise a manager of the
service centre on certain decision policies to keep
the customers satisfied.

m Advise on the initial number of spares to keep delay
reasonable
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Step 1: Specify the problem and define
linguistic variables

There are four main linguistic variables: average
waiting time (mean delay) m, repair utilisation
factor of the service centre p, number of servers s,
and initial number of spare parts n.

CustomerArrivalRate
p= CustemerDepartureRate

The system must advise management on the number of spares
to keep as well as the number of servers. Increasing either
will increase cost and decrease waiting time in some proportion.
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Linguistic variables and their ranges

Linguistic Variable: Mean Delay, m

Linguistic Value Notation Numerical Range (normalised;
Very Short Vs 0,0.3]
Short s [0.1,0.5]
Medium M [0.4,0.7]

Linguistic Variable: Number of Servers, s

Linguistic Value Notation Numerical Range (normalised
Small S [0, 0.35]
Medium M [0.30, 0.70]
Large L [0.60, 1]

Linguistic Variable: Repair Utilisation Factor, p

Linguistic Value Notation Numerical Range
Low L [0, 0.6]
Medium M [0.4,0.8]
High H [0.6, 1]

Linguistic Variable: Number of Spares, n

Linguistic Value Notation Numerical Range (normalised;
Very Small Vs 0, 0.30]
Small s [0, 0.40]
Rather Small RS [0.25, 0.45]
Medium M [0.30, 0.70]
Rather Large RL [0.55, 0.75]
Large L [0.60, 1]
Very Large VL [0.70,1] a7

Step 2: Determine fuzzy sets

Fuzzy sets can have a variety of shapes. However,
a triangle or a trapezoid can often provide an
adequate representation of the expert knowledge,
and at the same time, significantly simplifies the
process of computation.




Fuzzy sets of Mean Delay m
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Fuzzy sets of Number of Servers s
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Fuzzy sets of Repair Utilisation Factor p

Degree of
Membership

Lo VAN
0.8

0.6

0.4
0.2

0.0 T T T f T 1 T T T
0 01 02 03 04 05 06 0.7 0.8 0.9 1
Repair Utilisation Factor

Fuzzy sets of Number of Spares n
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Step 3: Elicit and construct fuzzy rules

To accomplish this task, we might ask the expert to
describe how the problem can be solved using the
fuzzy linguistic variables defined previously.

Required knowledge also can be collected from
other sources such as books, computer databases,
flow diagrams and observed human behaviour.

Rules about utilization and spares

1. If (utilisation_factor is L) then (number_of_spares is S)
2. If (utilisation_factor is M) then (number_of_spares is M)
3. If (utilisation_factor is H) then (number_of_spares is L)




Rules about delay, servers and
spares

4. If (mean_delay is VS)
5. If(mean_delay is S)
6. If(mean_delay is M

If (mean_delay is VS,

and (number_of_servers is S) then (number_of_spares is VL)
and (number_of_servers is S) then (number_of_spares is L)
and (number_of_servers is S) then (number_of_spares is M)
and (number_of_servers is M) then (number_of_spares is RL)

7.

8. If(mean_delay is S) and (number_of_servers is M) then (number_of_spares is RS)
9. If(mean_delay is M) and (number_of_servers is M) then (number_of_spares is S)
1 If (mean_delay is VS) and (number_of_servers is L) then (number_of_spares is M)
11.  If (mean_delay is S) and (number_of_servers is L) then (number_of_spares is S)
12, If (mean_delay is M) and (number_of_servers is L) then (number_of_spares is VS)

The larger rule base for three

combinations
Rulefm | s{p|njRuelm([s ]| pf[nfRueflm|s|p]|n
1 VS| S L |vs|10 VS| s M S [19 VS| § H [ VL
2 S S L |vs|f11 S S M | Vs | 20 S H L
3 M S L [vs|12 M S M|vs|21 M S H M
4 VS| M L |vs|13 VS| M [ M|RS |22 Vs M H M
5 S M L |vs|14 S M| M S |23 M H M
6 M| M L |vs|15 M| M|[M]|Vs|24 M| M H S
7 VS| L L S || 16 VS| L M| M|25 VS| L H [RL
8 S L L s |17 S L M | RS || 26 S L H M
9 M L L |vs|18 M L M S [ 27 M L H [ RS
if mean_delay is VS
and number_servers is S
and utilization is Low
then spares is VS 56

Step 4: Encode the fuzzy sets, fuzzy rules
and procedures to perform fuzzy
inference into the expert system

Step 5: Evaluate and tune the system

The last, and the most laborious, task is to evaluate
and tune the system. We want to see whether our
fuzzy system meets the requirements specified at
the beginning.

Several test situations depend on the mean delay,
number of servers and repair utilisation factor.

The Fuzzy Logic Toolbox can generate surface to
help us analyse the system’s performance.

However, the expert might not be satisfied with the
system performance.

To improve the system performance, we may use
additional sets — Rather Small and Rather Large —
on the universe of discourse Number of Servers,
and then extend the rule base.

Modified fuzzy sets of Number of Servers s

Degree of
Membership

Lo A N\
08 [5]
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Number of Servers (normalised)
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Tuning fuzzy systems

1. Review model input and output variables, and if
required redefine their ranges.

2. Review the fuzzy sets, and if required define
additional sets on the universe of discourse.
The use of wide fuzzy sets may cause the fuzzy
system to perform roughly.

3. Provide sufficient overlap between neighbouring
sets. It is suggested that triangle-to-triangle and
trapezoid-to-triangle fuzzy sets should overlap
between 25% to 50% of their bases.

4. Review the existing rules, and if required add new
rules to the rule base.

5. Adjust the rule execution weights. Most fuzzy
logic tools allow control of the importance of rules
by changing a weight multiplier.

6. Revise shapes of the fuzzy sets. In most cases,
fuzzy systems are highly tolerant of a shape
approximation.
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